दम्भो दर्पोऽभिमानश्च क्रोध: पारुष्यमेव च |अज्ञानं चाभिजातस्य पार्थ सम्पदमासुरीम् ||

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11B

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11B

These Solutions are part of RS Aggarwal Solutions Class 10. Here we have given RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions

Exercise 11B

Question 1.

Solution:

(3k – 2), (4k – 6) and (k + 2) are three consecutive terms of an AP.

(4k – 6) – (3k – 2) = (k + 2) – (4k – 6)

⇒ 2(4k – 6) = (k + 2) + (3k – 2)

⇒ 8k – 12 = 4k + 0

⇒ 8k – 4k = 0 + 12

⇒ 4k = 12

k = 3

Question 2.

Solution:

(5x + 2), (4x – 1) and (x + 2) are in AP.

(4x – 1) – (5x + 2) = (x + 2) – (4x – 1)

⇒ 2(4x – 1) = (x + 2) + (5x + 2)

⇒ 8x – 2 = 6x + 2 + 2

⇒ 8x – 2 = 6x + 4

⇒ 8x – 6x = 4 + 2

⇒ 2x = 6

x = 3

Question 3.

Solution:

(3y – 1), (3y + 5) and (5y + 1) are the three consecutive terms of an AP.

(3y + 5) – (3y – 1) – (5y + 1) – (3y + 5)

⇒ 2(3y + 5) = 5y + 1 + 3y – 1

⇒ 6y + 10 = 8y

⇒ 8y – 6y = 10

⇒ 2y = 10

⇒ y = 5

y = 5

Question 4.

Solution:

(x + 2), 2x, (2x + 3) are three consecutive terms of an AP.

2x – (x + 2) = (2x + 3) – 2x

⇒ 2x – x – 2 = 2x + 3 – 2x

⇒ x – 2 = 3

⇒ x = 2 + 3 = 5

x = 5

Question 5.

Solution:

(a – b)², (a² + b²) and (a + b)² will be in AP.

If (a² + b²) – (a – b)² = (a + b)² – (a² + b²)

If (a² + b²) – (a² + b² – 2ab) = a² + b² + 2ab – a² – b²

2ab = 2ab which is true.

Hence proved.

Question 6.

Solution:

Let the three numbers in AP be

a – d, a, a + d

a – d + a + a + d = 15

⇒ 3a = 15

⇒ a = 5

and (a – d) x a x (a + d) = 80

a(a² – d²) = 80

⇒ 5(5² – d²) = 80

⇒ 25 – d² = 16

⇒ d² = 25 – 16 = 9 = (±3)²

d = ±3

Now, a = 5, d = +3

Numbers are 5 – 3 = 2

5 and 5 + 3 = 8

= (2, 5, 8) or (8, 5, 2)

Question 7.

Solution:

Let the three numbers in AP be a – d, a and a + d

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11B 7.1

Question 8.

Solution:

Sum of three numbers = 24

Let the three numbers in AP be a – d, a, a + d

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11B 8.1

Question 9.

Solution:

Let three consecutive in AP be a – d, a, a + d

a – d + a + a + d = 21

⇒ 3a = 21

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11B 9.1

Question 10.

Solution:

Sum of angles of a quadrilateral = 360°

Let d= 10

The first number be a, then the four numbers will be

a, a + 10, a + 20, a + 30

a + a + 10 + a + 20 + a + 30 = 360

4a + 60 = 360

4a = 360 – 60 = 300

Angles will be 75°, 85°, 95°, 105°

Question 11.

Solution:

Let the four numbers in AP be a – 3d, a – d, a + d, a + 3d, then

a – 3d + a – d + a + d + a + 3d = 28

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11B 11.1

Question 12.

Solution:

Let the four parts of 32 be a – 3d, a – d, a + d, a + 3d

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11B 12.1

Question 13.

Solution:

Let the three terms be a – d, a, a + d

a – d + a + a + d = 48

⇒ 3a = 48

⇒ a = 16

and (a – d) x a = (a + d) + 12

⇒ a(a – d) = 4 (a + d) + 12

⇒ 16 (16 – d) = 4(16 + d) + 12

⇒ 256 – 16d = 64 + 4
d + 12 = 4d + 76

⇒ 256 – 76 = 4d + 16d

⇒ 180 = 20d

⇒ d = 9

Numbers are (16 – 9, 16), (16 + 9) or (7, 16, 25)

Hope given RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions are helpful to complete your math homework.

If you have any doubts, please comment below. A Plus Topper try to provide online math tutoring for you.

Share this article
Shareable URL
Prev Post

Plus Two Political Science Chapter Wise Questions and Answers Chapter 5 Challenges to and Restoration of Congress System

Next Post

Plus Two Political Science Chapter Wise Questions and Answers Chapter 6 The Crisis of Democratic Order

Leave a Reply
Read next
0
Share