RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D

These Solutions are part of RS Aggarwal Solutions Class 10. Here we have given RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions

Exercise 11D

Very-Short and Short-Answer Questions

Question 1.

Solution:

(3y – 1), (3y + 5) and (5y+ 1) are in AP

(3y + 5) – (3y – 1) = (5y + 1) – (3y + 5)

⇒ 2 (3y + 5) = (5y + 1) + (3y – 1)

⇒ 6y + 10 = 8y

⇒ 8y – 6y = 10

⇒ 2y = 10

⇒ y = 5

y = 5

Question 2.

Solution:

k, (2k – 1) and (2k + 1) are the three successive terms of an AP.

(2k – 1) – k = (2k + 1) – (2k – 1)

⇒ 2 (2k – 1) = 2k + 1 + k

⇒ 4k – 2 = 3k + 1

⇒ 4k – 3k = 1 + 2

⇒ k = 3

k = 3

Question 3.

Solution:

18, a, (b – 3) are in AP

⇒ a – 18 = b – 3 – a

⇒ a + a – b = -3 + 18

⇒ 2a – b = 15

Question 4.

Solution:

a, 9, b, 25 are in AP.

9 – a = b – 9 = 25 – b

b – 9 = 25 – b

⇒ b + b = 22 + 9 = 34

⇒ 2b = 34

⇒ b= 17

a – b = a – 9

⇒ 9 + 9 = a + b

⇒ a + b = 18

⇒ a + 17 = 18

⇒ a = 18 – 17 = 1

a = 18, b= 17

Question 5.

Solution:

(2n – 1), (3n + 2) and (6n – 1) are in AP

(3n + 2) – (2n – 1) = (6n – 1) – (3n + 2)

⇒ (3n + 2) + (3n + 2) = 6n – 1 + 2n – 1

6n + 4 = 8n – 2

⇒ 8n – 6n = 4 + 2

⇒ 2n = 6

⇒ n = 3

and numbers are

2 x 3 – 1 = 5

3 x 3 + 2 = 11

6 x 3 – 1 = 17

i.e. (5, 11, 17) are required numbers.

Question 6.

Solution:

Three digit numbers are 100 to 990 and numbers which are divisible by 7 will be

105, 112, 119, 126, …, 994

Here, a = 105, d= 7, l = 994

Tn = (l) = a + (n – 1) d

⇒ 994 = 105 + (n – 1) x 7

⇒ 994 – 105 = (n – 1) 7

⇒ (n – 1) x 7 = 889

⇒ n – 1 = 127

⇒ n = 127 + 1 = 128

Required numbers are 128

Question 7.

Solution:

Three digit numbers are 100 to 999

and numbers which are divisible by 9 will be

108, 117, 126, 135, …, 999

Here, a = 108, d= 9, l = 999

T(l) = a + (n – 1) d

⇒ 999 = 108 + (n – 1) x 9

⇒ (n – 1) x 9 = 999 – 108 = 891

⇒ n – 1 = 99

⇒ n = 99 + 1 = 100

Question 8.

Solution:

Sum of first m terms of an AP = 2m² + 3m

Sm = 2m² + 3m

S1 = 2(1)² + 3 x 1 = 2 + 3 = 5

S2 = 2(2)² + 3 x 2 = 8 + 6=14

S3 = 2(3)² + 3 x 3 = 18 + 9 = 27

Now, T2 = S2 – S1 = 14 – 5 = 9

Second term = 9

Question 9.

Solution:

AP is a, 3a, 5a, …

Here, a = a, d = 2a

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 9.1

Question 10.

Solution:

AP 2, 7, 12, 17, …… 47

Here, a = 2, d = 7 – 2 = 5, l = 47

nth term from the end = l – (n – 1 )d

5th term from the end = 47 – (5 – 1) x 5 = 47 – 4 x 5 = 47 – 20 = 27

Question 11.

Solution:

AP is 2, 7, 12, 17, …

Here, a = 2, d = 7 – 2 = 5

an = a + (n – 1) d = 2 + (n – 1) x 5 = 2 + 5n – 5 = 5n – 3

Now, a30 = 2 + (30 – 1) x 5 = 2 + 29 x 5 = 2 + 145 = 147

and a20 = 2 + (20 – 1) x 5 = 2 + 19 x 5 = 2 + 95 = 97

a30 – a20 = 147 – 97 = 50

Question 12.

Solution:

Tn = 3n + 5

Tn-1 = 3 (n – 1) + 5 = 3n – 3 + 5 = 3n + 2

d = Tn – Tn-1 = (3n + 5) – (3n + 2) = 3n + 5 – 3n – 2 = 3

Common difference = 3

Question 13.

Solution:

T= 7 – 4n

Tn-1 = 7 – 4(n – 1) = 7 – 4n + 4 = 11 – 4n

d = Tn – Tn-1 = (7 – 4n) – (11 – 4n) = 7 – 4n – 11 + 4n = -4

d = -4

Question 14.

Solution:

AP is √8, √18, √32, …..

⇒ √(4 x 2) , √(9 x 2) , √(16 x 2), ………

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 14.1

Question 15.

Solution:

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 15.1

Question 16.

Solution:

AP is 21, 18, 15, …n

Here, a = 21, d = 18 – 21 = -3, l = 0

Tn (l) = a + (n – 1) d

0 = 21 + (n – 1) x (-3)

0 = 21 – 3n + 3

⇒ 24 – 3n = 0

⇒ 3n = 24

⇒ n = 8 .

0 is the 8th term.

Question 17.

Solution:

First n natural numbers are 1, 2, 3, 4, 5, …, n

Here, a = 1, d = 1

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 17.1

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 17.2

Question 18.

Solution:

First n even natural numbers are 2, 4, 6, 8, 10, … n

Here, a = 2, d = 4 – 2 = 2

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 18.1

Question 19.

Solution:

In an AP

First term (a) = p

and common difference (d) = q

T10 = a + (n – 1) d = p + (10 – 1) x q = (p + 9q)

Question 20.

Solution:

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 20.1

Question 21.

Solution:

2p + 1, 13, 5p – 3 are in AP, then

13 – (2p + 1) = (5p – 3) – 13

⇒ 13 – 2p – 1 = 5p – 3 – 13

⇒ 12 – 2p = 5p – 16

⇒ 5p + 2p = 12 + 16

⇒ 7p = 28

⇒ p = 4

P = 4

Question 22.

Solution:

(2p – 1), 7, 3p are in AP, then

⇒ 7 – (2p – 1) = 3p – 7

⇒ 7 – 2p + 1 = 3p – 7

⇒ 7 + 1 + 7 = 3p + 2p

⇒ 5p = 15

⇒ p = 3

P = 3

Question 23.

Solution:

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 23.1

Question 24.

Solution:

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 24.1

d = T2 – T1 = 14 – 8 = 6

Common difference = 6

Question 25.

Solution:

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 25.1

Question 26.

Solution:

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 26.1

Question 27.

Solution:

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 27.1

RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions Ex 11D 27.2

Hope given RS Aggarwal Solutions Class 10 Chapter 11 Arithmetic Progressions are helpful to complete your math homework.

If you have any doubts, please comment below. A Plus Topper try to provide online math tutoring for you.

You might also like
Leave A Reply