Pythagoras Theorem

Pythagoras Theorem

Theorem 1: In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Given: A right-angled triangle ABC in which B = ∠90º.

To Prove: (Hypotenuse)2 = (Base)2 + (Perpendicular)2.

i.e., AC2 = AB2 + BC2

Construction: From B draw BD ⊥ AC.

Pythagoras Theorem 1

Proof: In triangle ADB and ABC, we have

∠ADB = ∠ABC         [Each equal to 90º]

and, ∠A = ∠A           [Common]

So, by AA-similarity criterion, we have

∆ADB ~ ∆ABC

(Rightarrow frac{AD}{AB}=frac{AB}{AC})   [∵ In similar triangles corresponding sides are proportional]

⇒ AB2 = AD × AC                                ….(i)

In triangles BDC and ABC, we have

∠CDB = ∠ABC             [Each equal to 90º]

and, ∠C = ∠C                 [Common]

So, by AA-similarity criterion, we have

∆BDC ~ ∆ABC

(Rightarrow frac{DC}{BC}=frac{BC}{AC})         [∵ In similar triangles corresponding sides are proportional]

⇒ BC2 = AC × DC                              ….(ii)

Adding equation (i) and (ii), we get

AB2 + BC2 = AD × AC + AC × DC

⇒ AB2 + BC2 = AC (AD + DC)

⇒ AB2 + BC2 = AC × AC

⇒ AC2 = AB2 + BC2

Hence, AC2 = AB2 + BC2

The converse of the above theorem is also true as proved below.

[youtube https://www.youtube.com/watch?v=JDmglbduKvE?feature=oembed]

Read also:

Theorem 2: (Converse of Pythagoras Theorem).

In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the side is a right angle.

Given: A triangle ABC such that AC2 = AB2 + BC2

Pythagoras Theorem 2

Construction: Construct a triangle DEF such that DE = AB, EF = BC and ∠E = 90º,

Proof: In order to prove that B = ∠90º, it is sufficient to show that ∆ABC ~ ∆DEF.

For this we proceed as follows :

Since  ∆DEF is a right angled triangle with right angle at E. Therefore, by Pythagoras theorem, we have

DF2 = DE2 + EF2

⇒ DF2 = AB2 + BC2         [∵  DE = AB and EF = BC         (By construction)]

⇒ DF2 = AC2                        [∵  AB2 + BC2 = AC2 (Given)]

⇒ DF = AC                              ….(i)

Thus, in  ∆ABC and  ∆DEF, we have

AB = DE, BC = EF           [By construction]

and, AC = DF                   [From equation (i)]

∴ ∆ABC ~ ∆DEF

⇒ ∠B = ∠E = 90º

Hence, ∆ABC is a right triangle right angled at B.

Pythagoras Theorem With Examples

Example 1:    Side of a triangle is given, determine it is a right triangle.

(2a – 1) cm, (2sqrt { 2a } ) cm,  and (2a + 1) cm

Sol.    Let p = (2a – 1) cm, q = (2sqrt { 2a } ) cm and r = (2a + 1) cm.

Then, (p2 + q2) = (2a – 1)2 cm2 + (2 )2 cm2

= {(4a2 + 1– 4a) + 8a}cm2

= (4a2 + 4a + 1)cm2

= (2a + 1)2 cm2 = r2.

(p2 + q2) = r2.

Hence, the given triangle is right angled.

Example 2:    A man goes 10 m due east and then 24 m due north. Find the distance from the starting point.

Sol.    Let the initial position of the man be O and his final position be B. Since the man goes   10 m due east and then 24 m due north. Therefore, ∆AOB is a right triangle right-angled at A such that OA = 10 m and AB = 24 m.

Pythagoras Theorem 3

By Phythagoras theorem, we have

OB2 = OA2 + AB2

⇒ OB2 = 102 + 242 = 100 + 576 = 676

⇒ OB = (sqrt { 676 } ) = 26 m

Hence, the man is at a distance of 26 m from the starting point.

Example 3:    Two towers of heights 10 m and 30 m stand on a plane ground. If the distance between their feet is 15 m, find the distance between their tops.

Sol.

Pythagoras Theorem 4

By Phythagoras theorem, we have

AC2 = CE2 + AE2

⇒ AC2 = 152 + 202 = 225 + 400 = 625

⇒ AC = (sqrt { 625 } ) = 25 m.

Example 4:     In Fig., ∆ABC is an obtuse triangle, obtuse angled at B. If AD ⊥ CB, prove that

AC2 = AB2 + BC2 + 2BC × BD

Sol.    Given: An obtuse triangle ABC, obtuse-angled at B and AD is perpendicular to CB produced.

To Prove: AC2 = AB2 + BC2 + 2BC × BD

Proof: Since ∆ADB is a right triangle right angled at D. Therefore, by Pythagoras theorem, we have AB2 = AD2 + DB2              ….(i)

Pythagoras Theorem 5

Again ∆ADC is a right triangle right angled at D.

Therefore, by Phythagoras theorem, we have

AC2 = AD2 + DC2

⇒ AC2 = AD2 + (DB + BC)2


⇒ AC2 = AD2 + DB2 + BC2 + 2BC • BD

⇒ AC2 = AB2 + BC2 + 2BC • BD            [Using (i)]

Hence, AC2 = AB2 + BC2 + 2BC • BD

Example 5:     In figure, ∠B of ∆ABC is an acute angle and AD ⊥ BC, prove that

AC2 = AB2 + BC2 – 2BC × BD

Sol.    Given: A ∆ABC in which ∠B is an acute angle and AD ⊥ BC.

To Prove: AC2 = AB2 + BC2 – 2BC × BD.

Proof: Since ∆ADB is a right triangle right-angled at D. So, by Pythagoras theorem, we have

AB2 = AD2 + BD2          ….(i)

Again ∆ADC is a right triangle right angled at D.

Pythagoras Theorem 6

So, by Pythagoras theorem, we have

AC2 = AD2 + DC2

⇒ AC2 = AD2 + (BC – BD)2

⇒ AC2 = AD2 + (BC2 + BD2 – 2BC • BD)

⇒ AC2 = (AD2 + BD2) + BC2 – 2BC • BD

⇒ AC2 = AB2 + BC2 – 2BC • BD            [Using (i)]

Hence, AC2 = AB2 + BC2 – 2BC • BD

Example 6:     If ABC is an equilateral triangle of side a, prove that its altitude = (frac { sqrt { 3 }  }{ 2 } a).

Sol.    ∆ABD is an equilateral triangle.

We are given that AB = BC = CA = a.

AD is the altitude, i.e., AD ⊥ BC.

Now, in right angled triangles ABD and ACD, we have

AB = AC                  (Given)

and AD = AD         (Common side)

∆ABD ≅ ∆ACD     (By RHS congruence)

⇒ BD = CD ⇒ BD = DC = (frac { 1 }{ 2 }BC) = (frac { a }{ 2 })

Pythagoras Theorem 7

From right triangle ABD.

AB2 = AD2 + BD2

(Rightarrow =A+ )

(Rightarrow A=-frac}{4}=frac{3}{4})

(Rightarrow AD=frac{sqrt{3}}{2}a )

Example 7:     ABC is a right-angled triangle, right-angled at A. A circle is inscribed in it. The lengths of the two sides containing the right angle are 5 cm and 12 cm. Find the radius of the circle.

Sol.    Given that ∆ABC is right angled at A.

AC = 5 cm and AB = 12 cm

BC2 = AC2 + AB2 = 25 + 144 = 169

BC = 13 cm

Join OA, OB, OC

Pythagoras Theorem 8

Let the radius of the inscribed circle be r

Area of ∆ABC = Area of ∆OAB + Area of ∆OBC + Area of ∆OCA

⇒ 1/2 × AB × AC

(=frac{1}{2}left( 12text{ }times text{ }r right)text{ }+frac{1}{2}left( 13text{ }times text{ }r right)text{ }+frac{1}{2}left( 5text{ }times text{ }r right))

⇒  12 × 5 = r × {12 + 13 + 5}

⇒  60 = r × 30 ⇒   r = 2 cm

Example 7:     ABCD is a rhombus. Prove that

AB2 + BC2 + CD2 + DA2 = AC2 + BD2

Sol.    Let the diagonals AC and BD of rhombus ABCD intersect at O.

Since the diagonals of a rhombus bisect each other at right angles.

∴ ∠AOB = ∠BOC = ∠COD = ∠DOA = 90º

and AO = CO, BO = OD.

Since ∆AOB is a right triangle right-angle at O.

Pythagoras Theorem 9

∴ AB2 = OA2 + OB2

(Rightarrow A=+)         [∵ OA = OC and OB = OD]

⇒ 4AB2 = AC2 + BD2                      ….(i)

Similarly, we have

4BC2 = AC2 + BD2                    ….(ii)

4CD2 = AC2 + BD2                    ….(iii)

and, 4AD2 = AC2 + BD2           ….(iv)

Adding all these results, we get

4(AB2 + BC2 + AD2) = 4(AC2 + BD2)

⇒ AB2 + BC2 + AD2 + DA2 = AC2 + BD2

Example 8:     P and Q are the mid-points of the sides CA and CB respectively of a ∆ABC, right angled at C. Prove that:

(i) 4AQ2 = 4AC2 + BC2

(ii) 4BP2 = 4BC2 + AC2

(iii) (4AQ2 + BP2) = 5AB2

Sol.    

Pythagoras Theorem 10

(i)  Since ∆AQC is a right triangle right-angled at C.

∴ AQ2 = AC2 + QC2

⇒ 4AQ2 = 4AC2 + 4QC2         [Multiplying both sides by 4]

⇒ 4AQ2 = 4AC2 + (2QC)2

⇒ 4AQ2 = 4AC2 + BC2 [∵  BC = 2QC]

(ii)  Since ∆BPC is a right triangle right-angled at C.

∴ BP2 = BC2 + CP2

⇒ 4BP2 = 4BC2 + 4CP2      [Multiplying both sides by 4]

⇒ 4BP2 = 4BC2 + (2CP)2

⇒ 4BP2 = 4BC2 + AC2 [∵  AC = 2CP]

(iii)  From (i) and (ii), we have

4AQ2 = 4AC2 + BC2 and, 4BC2 = 4BC2 + AC2

∴ 4AQ2 + 4BP2 = (4AC2 + BC2) + (4BC2 + AC2)

⇒ 4(AQ2 + BP2) = 5 (AC2 + BC2)

⇒ 4(AQ2 + BP2) = 5 AB2

[In ∆ABC, we have AB2 = AC2 + BC2]

Example 9:     From a point O in the interior of a ∆ABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove that :

(i) AF2 + BD2 + CE2 = OA2 + OB2 + OC2 – OD2 – OE2 – OF2

(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2

Sol.     

Pythagoras Theorem 11

Let O be a point in the interior of ∆ABC and let OD ⊥ BC, OE ⊥ CA and OF ⊥ AB.

(i)  In right triangles ∆OFA, ∆ODB and ∆OEC, we have

OA2 = AF2 + OF2

OB2 = BD2 + OD2

and, OC2 = CE2 + OE2

Adding all these results, we get

OA2 + OB2 + OC2 = AF2 + BD2 + CE2 + OF2 + OD2 + OE2

⇒ AF2 + BD2 + CE2 = OA2 + OB2 + OC2 – OD2 – OE2 – OF2

(ii)  In right triangles ∆ODB and ∆ODC, we have

OB2 = OD2 + BD2

and, OC2 = OD2 + CD2

OB2 – OC2 = (OD2 + BD2) – (OD2 + CD2)

⇒ OB2 – OC2 = BD2 – CD2        ….(i)

Similarity, we have

OC2 – OA2 = CE2 – AE2             ….(ii)

and, OA2 – OB2 = AF2 – BF2            ….(iii)

Adding (i), (ii) and (iii), we get

(OB2 – OC2) + (OC2 – OA2) + (OA2 – OB2)

= (BD2 – CD2) + (CE2 – AE2) + (AF2 – BF2)

⇒ (BD2 + CE2 + AF2) – (AE2 + CD2 + BF2) = 0

⇒ AF2 + BD2 + CE2 = AE2 + CD2 + BF2

Example 10:     In a right triangle ABC right-angled at C, P and Q are the points on the sides CA and CB respectively, which divide these sides in the ratio 2 : 1. Prove that

(i) 9 AQ2 = 9 AC2 + 4 BC2

(ii) 9 BP2 = 9 BC2 + 4 AC2

(iii) 9 (AQ2 + BP2) = 13 AB2

Sol.    It is given that P divides CA in the ratio 2 : 1. Therefore,

(CP=frac { 2 }{ 3 }AC)      ….(i)

Also, Q divides CB in the ratio 2 : 1.

∴ (QC=frac { 2 }{ 3 }BC)      ….(ii)

Pythagoras Theorem 12

(i)  Applying pythagoras theorem in right-angled triangle ACQ, we have

AQ2 = QC2 + AC2

⇒ AQ2 = (frac { 4 }{ 9 }) BC2 + AC2              [Using (ii)]

⇒ 9 AQ2 = 4 BC2 + 9 AC2            ….(iii)

(ii)  Applying pythagoras theorem in right triangle BCP, we have

BP2 = BC2 + CP2

⇒ BP2 = BC2 + AC2               [Using (i)]

⇒ 9 BP2 = 9 BC2 + 4 AC2             ….(iv)

(iii)  Adding (iii) and (iv), we get

9 (AQ2 + BP2) = 13 (BC2 + AC2)

⇒ 9 (AQ2 + BP2) = 13 AB2 [∵  BC2 = AC2 + AB2]

Example 11:     In a ∆ABC, AD ⊥ BC and AD2 = BC × CD. Prove ∆ABC is a right triangle.

Sol.    

Pythagoras Theorem 13

In right triangles ADB and ADC, we have

AB2 = AD2 + BD2             ….(i)

and, AC2 = AD2 + DC2           ….(ii)

Adding (i) and (ii), we get

AB2 + AC2 = 2 AD2 × BD2 + DC2

⇒ AB2 + AC2 = 2BD × CD + BD2 + DC2         [∵  AD2 = BD × CD (Given)]

⇒ AB2 + AC2 = (BD + CD)2 = BC2

Thus, in ∆ABC, we have

AB2 = AC2 + BC2

Hence, ∆ABC, is a right triangle right-angled at A.

Example 12:      The perpendicular AD on the base BC of a ∆ABC intersects BC at D so that DB = 3 CD. Prove that 2AB2 = 2AC2 + BC2.

Sol.    We have,

Pythagoras Theorem 14

DB = 3CD

BC = BD + DC

The perpendicular AD on the base BC of a ∆ABC intersects BC at D so that DB = 3 CD. Prove that

2AC2 + BC2.

We have,

DB = 3CD

∴ BC = BD + DC

⇒ BC = 3 CD + CD

⇒ BD = 4 CD ⇒  CD = (frac { 1 }{ 4 }) BC

∴ CD = (frac { 1 }{ 4 }) BC  and BD = 3CD = (frac { 1 }{ 4 }) BC           ….(i)

Since ∆ABD is a right triangle right-angled at D.

∴ AB2 = AD2 + BD2           ….(ii)

Similarly, ∆ACD is a right triangle right angled at D.

∴ AC2 = AD2 + CD2         ….(iii)

Subtracting equation (iii) from equation (ii)  we get

AB2 – AC2 = BD2 – CD2

⇒ AB2 – AC2 = (-)       (left[ From (i) CD=frac{1}{4}BC, BD=frac{3}{4}BC right])

⇒ AB2 – AC2 = (frac { 9 }{ 16 }) BC2 – (frac { 1 }{ 16 }) BC2

⇒ AB2 – AC2 = (frac { 1 }{ 2 }) BC2

⇒ 2(AB2 – AC2) = BC2

⇒ 2AB2 = 2AC2 + BC2.

Example 13:      ABC is a right triangle right-angled at C. Let BC = a, CA = b, AB = c and let p be the length of perpendicular from C on AB, prove that

(i) cp = ab

(ii) (frac{1}}=frac{1}}+frac{1}})

Sol.    (i)  Let CD ⊥ AB. Then, CD = p.

Pythagoras Theorem 14

∴ Area of ∆ABC = (frac { 1 }{ 2 }) (Base × Height)

⇒  Area of ∆ABC = (frac { 1 }{ 2 }) (AB × CD) =  (frac
{ 1 }{ 2 }) cp

Also,

Area of ∆ABC = (frac { 1 }{ 2 }) (BC × AC) = (frac { 1 }{ 2 }) ab

∴ (frac { 1 }{ 2 }) cp = (frac { 1 }{ 2 }) ab

⇒  cp = ab

(ii)  Since ∆ABC is right triangle right-angled at C.

∴ AB2 = BC2 + AC2

⇒  c2 = a2 + b2

(Rightarrow =+ )         (left[ because cp,=,ab therefore c=frac{ab}{p} right])

(Rightarrow frac}}=+ )

(Rightarrow frac{1}}=frac+}}Rightarrow frac{1}}=frac{1}}+frac{1}} )

(Rightarrow frac{1}}=frac{1}}+frac{1}} )

You might also like
Leave A Reply