Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use]

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use]

ICSE SolutionsSelina ICSE Solutions

../ provides step by step solutions for Selina Concise Mathematics Class 9 ICSE Solutions Chapter 16 Area Theorems [Proof and Use]. You can download the Selina Concise Mathematics ICSE Solutions for Class 9 with Free PDF download option. Selina Publishers Concise Mathematics for Class 9 ICSE Solutions all questions are solved and explained by expert mathematic teachers as per ICSE board guidelines.

Download Formulae Handbook For ICSE Class 9 and 10

Selina ICSE Solutions for Class 9 Maths Chapter 16 Area Theorems [Proof and Use]

Exercise 16(A)

Solution 1:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -42

Solution 2:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -1

Since from the figure, we get CD//FE therefore FC must parallel to DE. Therefore it is proved that the quadrilateral CDEF is a parallelogram.

Area of parallelogram on same base and between same parallel lines is always equal and area of parallelogram is equal to the area of rectangle on the same base and of the same altitude i.e, between same parallel lines.

So Area of CDEF= Area of ABDC + Area of ABEF

Hence Proved

Solution 3:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -2

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -3

Solution 4:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -4

Given ABCD is a parallelogram. P and Q are any points on the sides AB and BC respectively, join diagonals AC and BD.

proof:

since triangles with same base and between same set of parallel lines have equal areas

area (CPD)=area(BCD)…… (1)

again, diagonals of the parallelogram bisects area in two equal parts

area (BCD)=(1/2) area of parallelogram ABCD…… (2)

from (1) and (2)

area(CPD)=1/2 area(ABCD)…… (3)

similarly area (AQD)=area(ABD)=1/2 area(ABCD)…… (4)

from (3) and (4)

area(CPD)=area(AQD),

hence proved.

(ii)

We know that area of triangles on the same base and between same parallel lines are equal

So Area of AQD= Area of ACD= Area of PDC = Area of BDC = Area of ABC=Area of APD + Area of BPC

Hence Proved

Solution 5:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -5

Solution 6:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -6

Solution 7:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -7

Solution 8:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -8

Solution 9:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -9

Solution 10:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -10

Solution 11:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -11

Solution 12:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -12

Solution 13:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -13

Solution 14:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -14

Solution 15:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -15

Solution 16:

We know that area of triangles on the same base and between same parallel lines are equal.

Consider ABED quadrilateral; AD||BE

With common base, BE and between AD and BE parallel lines, we have

Area of ΔABE = Area of ΔBDE

Similarly, in BEFC quadrilateral, BE||CF

With common base BC and between BE and CF parallel lines, we have

Area of ΔBEC = Area of ΔBEF

Adding both equations, we have

Area of ΔABE + Area of ΔBEC = Area of ΔBEF + Area of ΔBDE

=> Area of AEC = Area of DBF

Hence Proved

Solution 17:

Given: ABCD is a parallelogram.

We know that

Area of ΔABC = Area of ΔACD

Consider ΔABX,

Area of ΔABX = Area of ΔABC + Area of ΔACX

We also know that area of triangles on the same base and between same parallel lines are equal.

Area of ΔACX = Area of ΔCXD

From above equations, we can conclude that

Area of ΔABX = Area of ΔABC + Area of ΔACX = Area of ΔACD+ Area of ΔCXD = Area of ACXD Quadrilateral

Hence Proved

Solution 18:

Join B and R and P and R.

We know that the area of the parallelogram is equal to twice the area of the triangle, if the triangle and the parallelogram are on the same base and between the parallels

Consider ABCD parallelogram:

Since the parallelogram ABCD and the triangle ABR lie on AB and between the parallels AB and DC, we have

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -16

Exercise 16(B)

Solution 1:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -17

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -18

Solution 2:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -19

Solution 3:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -20

Solution 4:

We have to join PD and BD.

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -21

Solution 5:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -22

Solution 6:

Ratio of area of triangles with same vertex and bases along the same line is equal to ratio of their respective bases. So, we have

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -23

Solution 7:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -25

Solution 8:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -26

Exercise 16(C)

Solution 1:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -27

Solution 2:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -28

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -29

Solution 3:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -30

Solution 4:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -31

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -32

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -33

Solution 5:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -34

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -35

Solution 6:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -36

Solution 7:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -37

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -38

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -39

Solution 8:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -40

Solution 9:

Selina Concise Mathematics Class 9 ICSE Solutions Area Theorems [Proof and Use] image -41

More Resources for Selina Concise Class 9 ICSE Solutions

You might also like
Leave A Reply