Equations Reducible To A Pair Of Linear Equations

Equations Reducible To A Pair Of Linear Equations Examples

Example 1:    Solve the following system of equations

(frac { 1 }{ 2x }) – (frac { 1 }{ y }) = – 1; (frac { 1 }{ x }) + (frac { 1 }{ 2y }) = 8

Sol.    We have,

(frac { 1 }{ 2x }) – (frac { 1 }{ y }) = – 1          ….(1)

(frac { 1 }{ x }) + (frac { 1 }{ 2y }) = 8           ….(2)

Let us consider 1/x = u and 1/y = v.

Putting 1/x = u and 1/y = v in the above equations, we get;

(frac { u }{ 2 }) – v = – 1           ….(3)

u + (frac { v }{ 2 }) = 8 ….(4)

Let us eliminate v from the system of equations. So, multiplying equation (3) with 1/2 and (4) with 1, we get

(frac { u }{ 4 }) – (frac { v }{ 2 })  = (-frac { 1 }{ 2 }) ….(5)

u + (frac { v }{ 2 })  = 8 ….(6)

Adding equation (5) and (6), we get ;

(frac { u }{ 4 })  + u = (-frac { 1 }{ 2 })  + 8

⇒ (frac { 5u }{ 4 }) = (frac { 15 }{ 2 })

⇒ u = (frac { 15 }{ 2 }) × (frac { 4 }{ 5 })

⇒ u = 6

We know,

(frac { 1 }{ x }) = u ⇒ (frac { 1 }{ x })  = 6

⇒ x = (frac { 1 }{ 6 })

Putting 1/x = 6 in equation (2), we get ;

6 + (frac { 1 }{ 2y })  = 8  ⇒  (frac { 1 }{ 2y }) = 2

⇒ (frac { 1 }{ y })  = 4     ⇒  y = (frac { 1 }{ 4 })

Hence, the solution of the system is,

x = (frac { 1 }{ 6 })  , y = (frac { 1 }{ 4 })

Example 2:   Solve  (frac { 2 }{ x }) + (frac { 1 }{ 3y }) = (frac { 1 }{ 5 });            (frac { 3 }{ x }) + (frac { 2 }{ 3y }) = 2   and also find ‘a’ for which y = ax – 2.

Sol.    Considering 1/x = u and 1/y = v, the given system of equations becomes

2u + (frac { v }{ 3 }) = (frac { 1 }{ 5 })

⇒  (frac { 6u+v }{ 3 }) = (frac { 1 }{ 5 })

30u + 5v = 3           ….(1)

3u + (frac { 2v }{ 3 }) = 2     ⇒   9u + 2v = 6    ….(2)

Multiplying equation (1) with 2 and equation (2) with 5, we get

60u + 10v = 6 ….(3)

45u + 10v = 30 ….(4)

Subtracting equation (4) from equation (3), we get

15u = – 24

u = (-frac { 24 }{ 15 }) = (-frac { 8 }{ 5 })

Putting u = (-frac { 8 }{ 5 }) in equation (2), we get;

9 × (frac { -8 }{ 5 }) + 2v = 6

⇒ (frac { -72 }{ 5 }) + 2v = 6

⇒ 2v = 6 + (frac { 72 }{ 5 }) = (frac { 102 }{ 5 })

⇒ v = (frac { 51 }{ 5 })

Here (frac { 1 }{ x })  = u = (frac { -8 }{ 5 })

⇒ x = (frac { -5 }{ 8 })

And, (frac { 1 }{ y })  = v = (frac { 51 }{ 5 })  ⇒ y = ⇒ (frac { 5 }{ 51 })

Putting x = (frac { -5 }{ 8 }) and y = (frac { 5 }{ 51 }) in y = ax – 2, we get;

(frac { 5 }{ 51 }) = (frac { -5a }{ 8 }) – 2

(frac { 5a }{ 8 }) = – 2 – (frac { 5 }{ 51 }) = (frac { -102-5 }{ 51 }) = (frac { -107 }{ 51 })

a = (frac { -107 }{ 51 }) × (frac { 8 }{ 5 }) = (frac { -856 }{ 255 })

a = (frac { -856 }{ 255 })

Example 3:   Solve  (frac{2}{x+2y}+frac{6}{2x-y}=4text{ ; }frac{5}{2left( x+2y right)}+frac{1}{3left( 2x-y right)}=1)   where, x + 2y ≠ 0 and 2x – y ≠ 0

Sol.    Taking  (frac { 1 }{ x+2y }) = u and (frac { 1 }{ 2x-y }) = v, the above system of equations becomes

2u + 6v = 4         ….(1)

(frac { 5u }{ 2 }) + (frac { v }{ 3 }) = 1         ….(2)

Multiplying equation (2) by 18, we have;

45u + 6v = 18 ….(3)

Now, subtracting equation (3) from equation (1), we get ;

–43u = – 14   ⇒   u = (frac { 14 }{ 43 })

Putting u = 14/43 in equation (1), we get

2 × (frac { 14 }{ 43 }) + 6v = 4

⇒  6v = 4 – (frac { 28 }{ 43 }) = (frac { 172-28 }{ 43 })  ⇒   v = (frac { 144 }{ 43 })

Now, u = (frac { 14 }{ 43 }) = (frac { 1 }{ x+2y })

⇒ 14x + 28y = 43      ….(4)

And, v = (frac { 144 }{ 43 }) = (frac { 1 }{ 2x-y })

⇒ 288x – 144y = 43     ….(5)

Multiplying equation (4) by 288 and (5) by 14, the system of equations becomes

288 × 14x + 28y × 288 = 43 × 288

288x × 14 – 144y × 14 = 43 × 4

⇒ 4022x + 8064y = 12384       ….(6)

4022x – 2016y = 602      ….(7)

Subtracting equation (7) from (6), we get

10080y = 11782   ⇒   y = 1.6(approx)

Now, putting 1.6 in (4), we get,

14x + 28 × 1.6 = 63

⇒ 14x + 44.8 = 63   ⇒ 14x = 18.2

⇒  x = 1.3 (approx)

Thus, solution of the given system of equation is x = 1.3 (approx), y = 1.6 (approx).

Example 4:   Solve (frac{1}{x+y}+frac{2}{x-y}=2text{  and  }frac{2}{x+y}-frac{1}{x-y}=3 )    where, x + y ≠ 0 and x – y ≠ 0

Taking   (frac { 1 }{ x+y }) = u and   (frac { 1 }{ x-y }) = v the above system of equations becomes

u + 2v = 2                                 ….(1)

2u – v = 3                                 ….(2)

Multiplying equation (1) by 2, and (2) by 1, we get;

2u + 4v = 4                               ….(3)

2u – v = 3                                 ….(4)

Subtracting equation (4) from (3), we get

5v = 1 ⇒   v = (frac { 1 }{ 5 })

Putting v = 1/5 in equation (1), we get;

u + 2 × (frac { 1 }{ 5 }) = 2  ⇒ u = 2 – (frac { 2 }{ 5 }) = (frac { 8 }{ 5 })

Here, u = (frac { 8 }{ 5 }) = (frac { 1 }{ x+y })  ⇒  8x + 8y = 5        ….(5)

And, v = (frac { 1 }{ 5 }) = (frac { 1 }{ x-y })  ⇒  x – y = 5         ….(6)

Multiplying equation (5) with 1, and (6) with 8, we get;

8x + 8y = 5        ….(7)

8x – 8y = 40       ….(8)

Adding equation (7) and (8), we get;

16x = 45     ⇒  x =  (frac { 45 }{ 16 })

Now, putting the above value of x in equation (6), we get;

(frac { 45 }{ 16 }) – y = 5   ⇒  y = (frac { 45 }{ 16 }) – 5 = (frac { -35 }{ 16 })

Hence, solution of the system of the given equations is ;

x = (frac { 45 }{ 16 }) , y =  (frac { -35 }{ 16 })

You might also like
Leave A Reply