Solving Systems Of Equations By Elimination Method

Solving Systems Of Equations By Elimination Method

Step I: Let the two equations obtained be

a1x + b1y + c1 = 0                    ….(1)

a2x + b2y + c2 = 0                    ….(2)

Step II: Multiplying the given equation so as to make the co-efficients of the variable to be eliminated equal.

Step III: Add or subtract the equations so obtained in Step II, as the terms having the same coefficients may be either of opposite or the same sign.

Step IV : Solve the equations in one varibale so obtained in Step III.

Step V: Substitute the value found in Step IV in any one of the given equations and then copmpute the value of the other variable.

Elimination Method Examples

Example 1:    Solve the following system of linear equations by applying the method of elimination by equating the coefficients :

(i) 4x – 3y = 4                (ii) 5x – 6y = 8

2x + 4y = 3                     3x + 2y = 6

Sol.   (i)   We have,

4x – 3y = 4             ….(1)

2x + 4y = 3             ….(2)

Let us decide to eliminate x from the given equation. Here, the co-efficients of x are 4 and 2 respectively. We find the L.C.M. of 4 and 2 is 4. Then, make the co-efficients of x equal to 4 in the two equations.

Multiplying equation (1) with 1 and equation (2) with 2, we get

4x – 3y = 4           ….(3)

4x + 8y = 6          ….(4)

Subtracting equation (4) from (3), we get

–11y = –2  ⇒    y =  (frac { 2 }{ 11 })

Substituting y = 2/11 in equation (1), we get

⇒ 4x – 3 × (frac { 2 }{ 11 }) = 4

⇒ 4x – (frac { 6 }{ 11 }) = 4

⇒ 4x = 4 + (frac { 6 }{ 11 })

⇒ 4x = (frac { 50 }{ 11 })

⇒ x = (frac { 50 }{ 44 }) = (frac { 25 }{ 22 })

Hence, solution of the given system of equation is :

x = (frac { 25 }{ 22 }),  y = (frac { 2 }{ 11 })

(ii) We have;

5x – 6y = 8       ….(1)

3x + 2y = 6       ….(2)

Let us eliminate y from the given system of equations. The co-efficients of y in the given equations are 6 and 2 respectively. The L.C.M. of 6 and 2 is 6. We have to make the both coefficients equal to 6. So, multiplying both sides of equation (1) with 1 and equation (2) with 3, we get

5x – 6y = 8       ….(3)

9x + 6y = 18     ….(4)

Adding equation (3) and (4), we get

14x = 26      ⇒   x = (frac { 13 }{ 7 })

Putting x = (frac { 13 }{ 7 }) in equation (1), we get

5 × (frac { 13 }{ 7 }) – 6y = 8     ⇒ (frac { 65 }{ 7 }) – 6y = 8

⇒ 6y = (frac { 65 }{ 7 }) – 8 =  (frac { 65-56 }{ 7 }) = (frac { 9 }{ 7 })

⇒ y = (frac { 9 }{ 42 }) = (frac { 3 }{ 14 })

Hence, the solution of the system of equations is x = (frac { 13 }{ 7 }) , y = (frac { 3 }{ 14 })

Example 2:    Solve the following system of linear equations by usnig the method of elimination by equating the coefficients:

3x + 4y = 25 ;      5x – 6y = – 9

Sol.    The given system of equation is

3x + 4y = 25            ….(1)

5x – 6y = – 9          ….(2)

Let us eliminate y. The coefficients of y are 4 and – 6. The LCM of 4 and 6 is 12. So, we make the coefficients of y as 12 and – 12.

Multiplying equation (1) by 3 and equation (2) by 2, we get

9x + 12y = 75            ….(3)

10x – 12y = – 18       …(4)

Adding equation (3) and equation (4), we get

19x = 57   ⇒   x = 3.

Putting x = 3 in (1), we get,

3 × 3 + 4y = 25

⇒ 4y = 25 – 9 = 16  ⇒   y = 4

Hence, the solution is x = 3, y = 4.

Verification: Both the equations are satisfied by x = 3 and y = 4, which shows that the solution is correct.

Example 3:    Solve the following system of equations:

15x + 4y = 61;   4x + 15y = 72

Sol.   The given system of equation is

15x + 4y = 61         ….(1)

4x + 15y = 72        ….(2)

Let us eliminate y. The coefficients of y are 4 and 15. The L.C.M. of 4 and 15 is 60. So, we make the coefficients of y as 60. Multiplying (1) by 15 and (2) by 4, we get

225x + 60y = 915     ….(3)

16x + 60y = 288      ….(4)

Substracting (4) from (3), we get

209x = 627    ⇒  x = 3

Putting x = 3 in (1), we get

15 × 3 + 4y = 61 45 + 4y = 61

4y = 61 – 45 = 16   ⇒   y = 4

Hence, the solution is x = 3, y = 4.

Verification: On putting x = 3 and y = 4 in the given equations, they are satisfied. Hence, the solution is correct.

Example 4:    Solve the following system of equations by using the method of elimination by equating the co-efficients.

(frac { x }{ y }) + (frac { 2y }{ 5 }) + 2 = 10;  (frac { 2x }{ 7 }) – (frac { 5 }{ 2 }) + 1 = 9

Sol.    The given system of equation is

(frac { x }{ y }) + (frac { 2y }{ 5 }) + 2 = 10  ⇒   (frac { x }{ y }) + (frac { 2y }{ 5 }) = 8 …(1)

(frac { 2x }{ 7 }) – (frac { 5 }{ 2 }) + 1 = 9   ⇒   (frac { 2x }{ 7 }) – (frac { 5 }{ 2 }) = 8 ….(2)

The equation (1) can be expressed as :

(frac { 5x+4y }{ 10 }) = 8    ⇒  5x + 4y = 80 ….(3)

Similarly, the equation (2) can be expressed as :

(frac { 4x-7y }{ 14 }) = 8    ⇒  4x – 7y = 112 ….(4)

Now the new system of equations is

5x + 4y = 80 ….(5)

4x – 7y = 112 ….(6)

Now multiplying equation (5) by 4 and equation (6) by 5, we get

20x – 16y = 320 ….(7)

20x + 35y = 560 ….(8)

Subtracting equation (7) from (8), we get ;

y = (-frac { 240 }{ 51 })

Putting y = (-frac { 240 }{ 51 }) in equation (5), we get ;

5x + 4 × (frac { -240 }{ 51 }) = 80   ⇒    5x – (frac { 960 }{ 51 }) = 80

⇒  5x = 80 + (frac { 960 }{ 51 }) = (frac { 4080+960 }{ 51 }) = (frac { 5040 }{ 51 })

⇒  x = (frac { 5040 }{ 255 }) = (frac { 1008 }{ 51 })= (frac { 336 }{ 17 })   ⇒  x = (frac { 336 }{ 17 })

Hence, the solution of the system of equations is, x = (frac { 336 }{ 17 }),   y = (-frac { 80 }{ 17 }) .

Example 5:    Solve the following system of linear equatoins by using the method of elimination by equating the coefficients

√3x – √2y = √3 = ; √5x – √3y = √2

Sol.    The given equations are

√3x – √2y = √3      ….(1)

√5x – √3y = √2       ….(2)

Let us eliminate y. To make the coefficients of equal, we multiply the equation (1) by √3 and equation (2) by √2 to get

3x – √6y = 3             ….(3)

√10x + √6y = 2        ….(4)

Adding equation (3) and equation (4), we get

3x + √10x = 5 ⇒  (3 + √10) x = 5

( Rightarrow text{x}=frac{5}{3+sqrt{10}}=left( frac{5}{sqrt{10}+3} right)times left( frac{sqrt{10}-3}{sqrt{10}-3} right))

(=5left( sqrt{10}-3 right))

Putting x = 5( √10– 3) in (1) we get

√3 × 5(√10 – 3) –√2 y = √3

⇒ 5√30 – 15√3 – √2y = √3

⇒ √2y = 5√30 – 15√3 – √3

⇒ √2y = 5√30 – 16√3

⇒ (y=frac{5sqrt{30}}{sqrt{2}}-frac{16sqrt{3}}{sqrt{2}})

⇒ y = 5√15 – 8√6

Hence, the solution is x = 5( √10– 3) and y = 5√15 – 8√6

Example 6:    Solve for x and y :

(frac { ax }{ b }) – (frac { by }{ a }) = a + b ; ax – by = 2ab

Sol.   The given system of equations is

(frac { ax }{ b }) – (frac { by }{ a }) = a + b     ….(1)

ax – by = 2ab      ….(2)

Dividing (2) by a, we get

x – (frac { by }{ a }) = 2b ….(3)

On subtracting (3) from (1), we get

(frac { ax }{ b }) – x = a – b    ⇒    (xleft( frac{a}{b}-1 right)) = a – b

⇒ x = (frac{(a-b)b}{a-b}) = b      ⇒ x = b

On substituting the value of x in (3), we get

b –  (frac { by }{ a })  = 2b  ⇒ (bleft( 1-frac{y}{a} right)) = 2b

⇒  1 –  (frac { y }{ a }) = 2    ⇒     (frac { y }{ a }) = 1 – 2

⇒  (frac { y }{ a }) = –1      ⇒   y = –a

Hence, the solution of the equations is

x = b, y = – a

Example 7:    Solve the following system of linear equations :

2(ax – by) + (a + 4b) = 0

2(bx + ay) + (b – 4a) = 0

Sol.    2ax – 2by + a + 4b = 0 …. (1)

2bx + 2ay + b – 4a = 0 …. (2)

Multiplyng (1) by b and (2) by a and subtracting, we get

2(b2 + a2) y = 4 (a2 + b2) ⇒   y = 2

Multiplying (1) by a and (2) by b and adding, we get

2(a2 + b2) x + a2 + b2 = 0

2(a2 + b2) x = – (a2 + b2)  ⇒   x = – 1/2

Hence x = –1/2, and y = 2

Example 8:    Solve (a – b) x + (a + b) y = a2 – 2ab – b2

(a + b) (x + y) = a2 + b2

Sol.   The given system of equation is

(a – b) x + (a + b) y = a2 – 2ab – b2 ….(1)

(a + b) (x + y) = a2 + b2 ….(2)

⇒  (a + b) x + (a + b) y = a2 + b2 ….(3)

Subtracting equation (3) from equation (1), we get

(a – b) x – (a + b) x = (a2 – 2ab– b2) – (a2 + b2)

⇒  –2bx = – 2ab – 2b2

⇒  (text{x}=frac{-2ab}{-2b}-frac{2}{-2b}=a+b)

Putting the value of x in (1), we get

⇒  (a – b) (a + b) + (a + b) y = a2  – 2ab – b2

⇒  (a + b) y = a2  – 2ab – b2 – (a2  – b2 )

⇒  (a + b) y = – 2ab

⇒  y = (frac { -2ab }{ a+b })

Hence, the solution is x = a + b,

y = (frac { -2ab }{ a+b })

You might also like
Leave A Reply